\(\int (d \sec (e+f x))^{3/2} (a+b \tan (e+f x)) \, dx\) [580]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 88 \[ \int (d \sec (e+f x))^{3/2} (a+b \tan (e+f x)) \, dx=-\frac {2 a d^2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{f \sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}}+\frac {2 b (d \sec (e+f x))^{3/2}}{3 f}+\frac {2 a d \sqrt {d \sec (e+f x)} \sin (e+f x)}{f} \]

[Out]

2/3*b*(d*sec(f*x+e))^(3/2)/f-2*a*d^2*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticE(sin(1/2*f*x+1/2
*e),2^(1/2))/f/cos(f*x+e)^(1/2)/(d*sec(f*x+e))^(1/2)+2*a*d*sin(f*x+e)*(d*sec(f*x+e))^(1/2)/f

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3567, 3853, 3856, 2719} \[ \int (d \sec (e+f x))^{3/2} (a+b \tan (e+f x)) \, dx=-\frac {2 a d^2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{f \sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}}+\frac {2 a d \sin (e+f x) \sqrt {d \sec (e+f x)}}{f}+\frac {2 b (d \sec (e+f x))^{3/2}}{3 f} \]

[In]

Int[(d*Sec[e + f*x])^(3/2)*(a + b*Tan[e + f*x]),x]

[Out]

(-2*a*d^2*EllipticE[(e + f*x)/2, 2])/(f*Sqrt[Cos[e + f*x]]*Sqrt[d*Sec[e + f*x]]) + (2*b*(d*Sec[e + f*x])^(3/2)
)/(3*f) + (2*a*d*Sqrt[d*Sec[e + f*x]]*Sin[e + f*x])/f

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3567

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*((d*Sec[
e + f*x])^m/(f*m)), x] + Dist[a, Int[(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[2
*m] || NeQ[a^2 + b^2, 0])

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps \begin{align*} \text {integral}& = \frac {2 b (d \sec (e+f x))^{3/2}}{3 f}+a \int (d \sec (e+f x))^{3/2} \, dx \\ & = \frac {2 b (d \sec (e+f x))^{3/2}}{3 f}+\frac {2 a d \sqrt {d \sec (e+f x)} \sin (e+f x)}{f}-\left (a d^2\right ) \int \frac {1}{\sqrt {d \sec (e+f x)}} \, dx \\ & = \frac {2 b (d \sec (e+f x))^{3/2}}{3 f}+\frac {2 a d \sqrt {d \sec (e+f x)} \sin (e+f x)}{f}-\frac {\left (a d^2\right ) \int \sqrt {\cos (e+f x)} \, dx}{\sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}} \\ & = -\frac {2 a d^2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{f \sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}}+\frac {2 b (d \sec (e+f x))^{3/2}}{3 f}+\frac {2 a d \sqrt {d \sec (e+f x)} \sin (e+f x)}{f} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.96 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.66 \[ \int (d \sec (e+f x))^{3/2} (a+b \tan (e+f x)) \, dx=\frac {(d \sec (e+f x))^{3/2} \left (2 b-6 a \cos ^{\frac {3}{2}}(e+f x) E\left (\left .\frac {1}{2} (e+f x)\right |2\right )+3 a \sin (2 (e+f x))\right )}{3 f} \]

[In]

Integrate[(d*Sec[e + f*x])^(3/2)*(a + b*Tan[e + f*x]),x]

[Out]

((d*Sec[e + f*x])^(3/2)*(2*b - 6*a*Cos[e + f*x]^(3/2)*EllipticE[(e + f*x)/2, 2] + 3*a*Sin[2*(e + f*x)]))/(3*f)

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 3.59 (sec) , antiderivative size = 412, normalized size of antiderivative = 4.68

method result size
default \(-\frac {2 a \left (i E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \left (\cos ^{2}\left (f x +e \right )\right )-i F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \left (\cos ^{2}\left (f x +e \right )\right )+2 i \cos \left (f x +e \right ) E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}-2 i \cos \left (f x +e \right ) F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}+i \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}-i \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}-\sin \left (f x +e \right )\right ) \sqrt {d \sec \left (f x +e \right )}\, d}{f \left (\cos \left (f x +e \right )+1\right )}+\frac {2 b \left (d \sec \left (f x +e \right )\right )^{\frac {3}{2}}}{3 f}\) \(412\)
parts \(-\frac {2 a \left (i E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \left (\cos ^{2}\left (f x +e \right )\right )-i F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \left (\cos ^{2}\left (f x +e \right )\right )+2 i \cos \left (f x +e \right ) E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}-2 i \cos \left (f x +e \right ) F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}+i \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}-i \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}-\sin \left (f x +e \right )\right ) \sqrt {d \sec \left (f x +e \right )}\, d}{f \left (\cos \left (f x +e \right )+1\right )}+\frac {2 b \left (d \sec \left (f x +e \right )\right )^{\frac {3}{2}}}{3 f}\) \(412\)

[In]

int((d*sec(f*x+e))^(3/2)*(a+b*tan(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

-2*a/f*(I*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*co
s(f*x+e)^2-I*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)
*cos(f*x+e)^2+2*I*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^
(1/2)*cos(f*x+e)-2*I*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1
))^(1/2)*cos(f*x+e)+I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f
*x+e)),I)-I*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(cos(f*x+e)+1))^(1/2)-
sin(f*x+e))*(d*sec(f*x+e))^(1/2)*d/(cos(f*x+e)+1)+2/3*b*(d*sec(f*x+e))^(3/2)/f

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.36 \[ \int (d \sec (e+f x))^{3/2} (a+b \tan (e+f x)) \, dx=\frac {-3 i \, \sqrt {2} a d^{\frac {3}{2}} \cos \left (f x + e\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) + 3 i \, \sqrt {2} a d^{\frac {3}{2}} \cos \left (f x + e\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right ) + 2 \, {\left (3 \, a d \cos \left (f x + e\right ) \sin \left (f x + e\right ) + b d\right )} \sqrt {\frac {d}{\cos \left (f x + e\right )}}}{3 \, f \cos \left (f x + e\right )} \]

[In]

integrate((d*sec(f*x+e))^(3/2)*(a+b*tan(f*x+e)),x, algorithm="fricas")

[Out]

1/3*(-3*I*sqrt(2)*a*d^(3/2)*cos(f*x + e)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) + I*si
n(f*x + e))) + 3*I*sqrt(2)*a*d^(3/2)*cos(f*x + e)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x +
e) - I*sin(f*x + e))) + 2*(3*a*d*cos(f*x + e)*sin(f*x + e) + b*d)*sqrt(d/cos(f*x + e)))/(f*cos(f*x + e))

Sympy [F]

\[ \int (d \sec (e+f x))^{3/2} (a+b \tan (e+f x)) \, dx=\int \left (d \sec {\left (e + f x \right )}\right )^{\frac {3}{2}} \left (a + b \tan {\left (e + f x \right )}\right )\, dx \]

[In]

integrate((d*sec(f*x+e))**(3/2)*(a+b*tan(f*x+e)),x)

[Out]

Integral((d*sec(e + f*x))**(3/2)*(a + b*tan(e + f*x)), x)

Maxima [F]

\[ \int (d \sec (e+f x))^{3/2} (a+b \tan (e+f x)) \, dx=\int { \left (d \sec \left (f x + e\right )\right )^{\frac {3}{2}} {\left (b \tan \left (f x + e\right ) + a\right )} \,d x } \]

[In]

integrate((d*sec(f*x+e))^(3/2)*(a+b*tan(f*x+e)),x, algorithm="maxima")

[Out]

integrate((d*sec(f*x + e))^(3/2)*(b*tan(f*x + e) + a), x)

Giac [F]

\[ \int (d \sec (e+f x))^{3/2} (a+b \tan (e+f x)) \, dx=\int { \left (d \sec \left (f x + e\right )\right )^{\frac {3}{2}} {\left (b \tan \left (f x + e\right ) + a\right )} \,d x } \]

[In]

integrate((d*sec(f*x+e))^(3/2)*(a+b*tan(f*x+e)),x, algorithm="giac")

[Out]

integrate((d*sec(f*x + e))^(3/2)*(b*tan(f*x + e) + a), x)

Mupad [F(-1)]

Timed out. \[ \int (d \sec (e+f x))^{3/2} (a+b \tan (e+f x)) \, dx=\int {\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{3/2}\,\left (a+b\,\mathrm {tan}\left (e+f\,x\right )\right ) \,d x \]

[In]

int((d/cos(e + f*x))^(3/2)*(a + b*tan(e + f*x)),x)

[Out]

int((d/cos(e + f*x))^(3/2)*(a + b*tan(e + f*x)), x)